If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-10t-40=0
a = 5; b = -10; c = -40;
Δ = b2-4ac
Δ = -102-4·5·(-40)
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-30}{2*5}=\frac{-20}{10} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+30}{2*5}=\frac{40}{10} =4 $
| 10^12x+6=100 | | 7x+10=-6/2 | | F(x)=-5x^2+50 | | y=12(+2)=24 | | (4x+8)=(7x+3) | | 16t^2-21t+10=0 | | 5x+25+x+5=90 | | -9=2y+3 | | 3x+24=48 | | 3x-(2x+8)=-7 | | n+4n+2=-8 | | 2826=4×3.14×r | | 28=-4n-2n+4 | | 1/3x-2=2/3x-1 | | 4^6x-6=36 | | (n+2)(n-1)=255 | | (6x+7)^2=36 | | 5^(x+18)=625^2x | | -9=7/8x-8-5/8x | | 4y’=y-8 | | -3=4n+0n-3 | | 11-5x+7=2-4x | | 3^5x-2=32 | | 34=-4v+7(v+7) | | 8-2x-3+4x=10+3x | | 2916=4n3/2 | | -23=-2+3w | | -1n+3n+4=4 | | 2x+61=67 | | 15(x-1/3)=x | | 4^(x-5)=20 | | v/2=38 |